By Topic

Consistent Clustering of Radar Reflectivities Using Strong Point Analysis: A Prelude to Storm Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Benjamin Root ; School of Meteorology and the Atmospheric Radar Research Center, University of Oklahoma, Norman, OK, USA ; Tian-You Yu ; Mark Yeary

An image segmentation algorithm using an alternating erosion/dilation technique called strong point analysis (SPA) is introduced for general-purpose feature detection. The ability to associate and group pixels with the salient features of an image allows computers to consider images not as an array of values but as a collection of objects. This enables other algorithms to perform advanced tasks, such as tracking an object in a time series of images. The qualitative needs for proper tracking of storm cells in radar images are discussed. To test SPA for those qualities, radar reflectivity images from three S-band weather radars were used. The algorithm is demonstrated to identify features fairly consistently over a time series of images, as well as exhibiting well-behaved changes to its output with respect to changes to the algorithm's input parameters.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:8 ,  Issue: 2 )