By Topic

Development of a Point-of-Care Testing Platform With a Nanogap-Embedded Separated Double-Gate Field Effect Transistor Array and Its Readout System for Detection of Avian Influenza

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Maesoon Im ; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA ; Jae-Hyuk Ahn ; Jin-Woo Han ; Tae Jung Park
more authors

Label-free electrical detection of avian influenza (AI) is demonstrated for the development of a point-of-care testing (POCT) platform. For a new POCT platform, a novel field effect transistor (FET)-based biosensor array was fabricated with conventional complementary metal-oxide-semiconductor (CMOS) technology. Nanogap-embedded separated double-gate FETs (nanogap-DGFETs) were realized in a 6×6 array as a biosensor cartridge. Moreover, the low-noise readout circuit was designed and fabricated using a 0.35- μm standard CMOS process. The AI antigen and antibody were bound with the aid of silica-binding proteins (SBP) in the nanogap of the biosensor device. Because the gate dielectric constant was increased by the immobilized biomolecules, the threshold voltage of the nanogap-DGFET was reduced while the drain-to-source current was enhanced. Drain-to-source currents of the nanogap-DGFET array were successfully acquired using the fabricated readout circuitry and measurement setup. This platform is suitable for a simple and effective label-free detection of AI in POCT applications.

Published in:

IEEE Sensors Journal  (Volume:11 ,  Issue: 2 )