By Topic

Iterative Frequency Domain Equalization and Carrier Synchronization for Multi-Resolution Constellations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pedrosa, P. ; Inst. de Telecomun., Lisbon, Portugal ; Dinis, R. ; Nunes, F.

Broadband broadcast and multicast wireless systems usually employ OFDM modulations (Orthogonal Frequency Division Multiplexing) combined with non-uniform hierarchical constellations. However, these schemes are very prone to nonlinear distortion effects and have high carrier synchronization requirements. SC-FDE (Single-Carrier with Frequency-Domain Equalization) is an attractive alternative for OFDM, especially when an efficient power amplification is intended. In this paper we consider the use of SC-FDE schemes combined with non-uniform hierarchical constellations in broadband broadcast and multicast wireless systems. We study the impact of residual CFO (Carrier Frequency Offset) on the performance of multi-resolution schemes and we propose iterative frequency domain receivers with joint detection and carrier synchronization to cope with residual CFO estimation errors (a coarse CFO estimation and compensation is assumed before the equalization procedure). Our results show that while a very high carrier synchronization accuracy is required for the least protected bits, the most protected bits are relatively robust to the CFO. By employing the proposed receiver we increase significantly the robustness to residual CFO estimation errors.

Published in:

Broadcasting, IEEE Transactions on  (Volume:56 ,  Issue: 4 )