By Topic

Predicting MHC-II Binding Affinity Using Multiple Instance Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
EL-Manzalawy, Y. ; Dept. of Syst. & Comput. Eng., Al-Azhar Univ., Cairo, Egypt ; Dobbs, D. ; Honavar, V.

Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark data sets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 4 )