By Topic

Memristor system properties and its design applications to circuits such as nonvolatile memristor memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang, G.M. ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Yenpo Ho ; Peng Li

Novel nonvolatile universal memory technology is essential for providing required storage for nano-computing. As a potential contender for the next-generation memory, the recently found “the missing fourth circuit element”, memristor, has drawn a great deal of research interests. In this paper, by starting from basic memristor device equations that assumes constant ion mobility, we develop a comprehensive set of properties and design equations for memristor based memories. Our analyses are specifically targeting key electrical memristor device characteristics relevant to, but not limited to, memory operations. However, like many nano devices, a small voltage drop across the memristor will yield an enormous electric field, which may produce significant highly nonlinear ionic transport that the linear drift assumption no longer holds for realistic memristors. Issues such as how to design circuits facing such nonlinear drift will be discussed. In addition, issues such as how to sense the memory states and perturbations during sensing will be addressed. In this paper, we demonstrate that we can successfully use the derived properties based on the linear drift model to design read and write circuits and analyze important data integrity and noise-tolerance issues for realistic nonlinear drift models.

Published in:

Communications, Circuits and Systems (ICCCAS), 2010 International Conference on

Date of Conference:

28-30 July 2010