By Topic

Computational Analysis: Towards a Better Knowledge of the Molecular Evolution of Phosphoenolpyruvate Carboxylase among Flaveria Species

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Govinda Lenka ; Dept. of Chem. Eng. & Biotechnol., NTUT, Taipei, Taiwan ; Wen-Hui Weng ; KuoYuan Hwa

Flaveria is a genus of plants in the sunflower family (Asteraceae). Within the close species of Flaveria, there are several different photosynthetic metabolisms including C3, C4 and C3-C4 mixed metabolism. In C4 metabolism, phosphoenolpyruvate carboxylase (PEPC) catalyses the primary fixation of atmospheric CO2. In order to elucidate the discrete steps in PEPC evolution computational analysis was made for the PEPC protein sequences of C3, C3-C4 and C4 species of the dicot genus Flaveria. The predicted key amino acid residue changes and putative phosphorylation sites can advance our knowledge on plant photosynthesis metabolism, especially on the regulation of PEPC activity. One of the most notable amino acid residue changes found at 123 contains serine in C4 Flaveria species and occupied by arginine in C3, C3-C4, and C4 like Flaveria species and also the serine residue at this position was predicted as putative phosphorylation site. Functional expression and characterization of the C3, C3-C4 intermediate and C4 PEPC of Flaveria species enzymes can reveal that these molecules exhibit diverse kinetic properties despite their relatively high degree of sequence similarity.

Published in:

Information Technology Convergence and Services (ITCS), 2010 2nd International Conference on

Date of Conference:

11-13 Aug. 2010