Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A double level fusion architecture based intelligence algorithms for lumber drying parameters detection system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuan-Ze Liu ; Electromech. Eng. Acad., Northeast Forestry Univ., Harbin, China ; Jia-Wei Zhang ; Ming-Bao Li

To solve the problem that a single model can not precisely describe the global properties of the lumber moisture content (LMC) during the wood drying process, LMC measurement based multi-modeling method is presented in this paper. The method based on double layers intelligent structure which Fuzzy C-Means clustering is classification layer to classify equivalent resistance value, the inlet ambient temperature and the outlet ambient temperature data into subsets which have different cluster centers. The RBFNN and LS-SVM are modeling layers. The deg of membership is used for weighting and meaning the output of each subset to obtain the estimated LMC value as the final output. Experimental simulation results show that multi-modeling method has strong generalization ability and prefer measuring performance.

Published in:

Machine Learning and Cybernetics (ICMLC), 2010 International Conference on  (Volume:1 )

Date of Conference:

11-14 July 2010