By Topic

Modeling and identification of gene regulatory networks: A Granger causality approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhang, Z.G. ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China ; Hung, Y.S. ; Chan, S.C. ; Xu, W.C.
more authors

It is of increasing interest in systems biology to discover gene regulatory networks (GRNs) from time-series genomic data, i.e., to explore the interactions among a large number of genes and gene products over time. Currently, one common approach is based on Granger causality, which models the time-series genomic data as a vector autoregressive (VAR) process and estimates the GRNs from the VAR coefficient matrix. The main challenge for identification of VAR models is the high dimensionality of genes and limited number of time points, which results in statistically inefficient solution and high computational complexity. Therefore, fast and efficient variable selection techniques are highly desirable. In this paper, an introductory review of identification methods and variable selection techniques for VAR models in learning the GRNs will be presented. Furthermore, a dynamic VAR (DVAR) model, which accounts for dynamic GRNs changing with time during the experimental cycle, and its identification methods are introduced.

Published in:

Machine Learning and Cybernetics (ICMLC), 2010 International Conference on  (Volume:6 )

Date of Conference:

11-14 July 2010