By Topic

High-Level Design and Validation of the BlueSPARC Multithreaded Processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eric S. Chung ; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA ; James C. Hoe

This paper presents our experiences in using high-level methods to design and validate a 16-way multithreaded microprocessor called BlueSPARC. BlueSPARC is an in-order, high-throughput processor supporting complex features such as privileged-mode operations, memory management, and a nonblocking cache subsystem. Using a high-level design language called Bluespec System Verilog (BSV), our final implementation achieves comparable synthesis quality to a similar commercial microprocessor developed using conventional register transfer level flows, and is capable of running unmodified commercial applications while hosted on a Xilinx XCV2P70 field-programmable gate array (FPGA) at 90 MHz. To validate our implementation, an FPGA-accelerated approach was developed to efficiently check the correct execution of real, nondeterministic multithreaded programs running on the BlueSPARC processor. Together, the high-level language features of BSV along with our validation approach enabled us to achieve a working FPGA-based implementation in less than one man-year.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:29 ,  Issue: 10 )