Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Multiple Transient Faults in Combinational and Sequential Circuits: A Systematic Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Miskov-Zivanov, Natasa ; Dept. of Comput. & Syst. Biol., Univ. of Pittsburgh, Pittsburgh, PA, USA ; Marculescu, D.

Transient faults in logic circuits are becoming an important reliability concern for future technology nodes. Radiation-induced faults have received significant attention in recent years, while multiple transients originating from a single radiation hit are predicted to occur more often. Furthermore, some effects, like reconvergent fanout-induced glitches, are more pronounced in the case of multiple faults. Therefore, to guide the design process and the choice of circuit optimization techniques, it is important to model multiple faults and their propagation through logic circuits, while evaluating the changes in error rates resulting from multiple simultaneous faults. In this paper, we show how output error probabilities change with increasing number of simultaneous faults and we also analyze the impact of multiple errors in state flip-flops, during the cycles following the cycle when fault(s) occurred. The results obtained using the proposed framework show that output error probability resulting from multiple-event transient or multiple-bit upsets can vary across different outputs and different circuits by several orders of magnitude. The results also show that the impact of different masking factors also varies across circuits and this information can be valuable for customizing protection techniques.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:29 ,  Issue: 10 )