Cart (Loading....) | Create Account
Close category search window
 

Robust Beamforming for Security in MIMO Wiretap Channels With Imperfect CSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mukherjee, A. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Irvine, CA, USA ; Swindlehurst, A.L.

In this paper, we investigate methods for reducing the likelihood that a message transmitted between two multi-antenna nodes is intercepted by an undetected eavesdropper. In particular, we focus on the judicious transmission of artificial interference to mask the desired signal at the time it is broadcast. Unlike previous work that assumes some prior knowledge of the eavesdropper's channel and focuses on maximizing secrecy capacity, we consider the case where no information regarding the eavesdropper is available, and we use signal-to-interference-plus-noise-ratio (SINR) as our performance metric. Specifically, we focus on the problem of maximizing the amount of power available to broadcast a jamming signal intended to hide the desired signal from a potential eavesdropper, while maintaining a prespecified SINR at the desired receiver. The jamming signal is designed to be orthogonal to the information signal when it reaches the desired receiver, assuming both the receiver and the eavesdropper employ optimal beamformers and possess exact channel state information (CSI). In practice, the assumption of perfect CSI at the transmitter is often difficult to justify. Therefore, we also study the resulting performance degradation due to the presence of imperfect CSI, and we present robust beamforming schemes that recover a large fraction of the performance in the perfect CSI case. Numerical simulations verify our analytical performance predictions, and illustrate the benefit of the robust beamforming schemes.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.