Cart (Loading....) | Create Account
Close category search window
 

Optimization of MIMO Relays for Multipoint-to-Multipoint Communications: Nonrobust and Robust Designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chalise, B.K. ; Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium ; Vandendorpe, L.

In this paper, we propose algorithms to jointly optimize the multiple multiantenna relays which assist multipoint-to-multipoint communications in wireless networks. Assuming that the knowledge of the second order statistics of the channels such as covariance matrices are available, the multiple-input-multiple-output (MIMO) relays are designed using two different methods: (1) minimize the sum of the powers of the relays while fulfilling the signal-to-interference-plus-noise ratio (SINR) requirements for all destinations and (2) maximize the minimum of the SINRs of all destinations satisfying the transmit power constraint of each MIMO relay. Furthermore, considering the fact that the covariance matrices of the channels between the MIMO relays and destinations are subject to uncertainty due to feedback and quantization errors, the robust versions of the aforementioned methods based on worst-case concept are proposed. It is shown that the proposed nonrobust as well as robust designs are nonconvex optimization problems but they can be solved accurately and efficiently using the standard semidefinite relaxation and randomization techniques. Computer simulations verify the improved performance of the robust designs over nonrobust methods.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 12 )

Date of Publication:

Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.