By Topic

On the Use of Stochastic Driver Behavior Model in Lane Departure Warning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pongtep Angkititrakul ; Human Factors Research Laboratory, Safety and Information System Division, Toyota Central R&D Laboratories, Nagakute, Japan ; Ryuta Terashima ; Toshihiro Wakita

In this paper, we propose a new framework for discriminating the initial maneuver of a lane-crossing event from a driver correction event, which is the primary reason for false warnings of lane departure prediction systems (LDPSs). The proposed algorithm validates the beginning episode of the trajectory of driving signals, i.e., whether it will cause a lane-crossing event, by employing driver behavior models of the directional sequence of piecewise lateral slopes (DSPLS) representing lane-crossing and driver correction events. The framework utilizes only common driving signals and allows the adaptation scheme of driver behavior models to better represent individual driving characteristics. The experimental evaluation shows that the proposed DSPLS framework has a detection error with as low as a 17% equal error rate. Furthermore, the proposed algorithm reduces the false-warning rate of the original lane departure prediction system with less tradeoff for the correct prediction.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:12 ,  Issue: 1 )