By Topic

An Advanced External Compensation System for Active Matrix Organic Light-Emitting Diode Displays With Poly-Si Thin-Film Transistor Backplane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Hai-Jung In ; Div. of Electron. & Comput. Eng., Hanyang Univ., Seoul, South Korea ; Kyong-Hwan Oh ; Inhwan Lee ; Do-Hyung Ryu
more authors

An advanced method for externally compensating the nonuniform electrical characteristics of polycrystalline silicon thin-film transistors (TFTs) and the degradation of organic light-emitting diode (OLED) devices is proposed, and the method is verified using a 14.1-in active matrix OLED (AMOLED) panel. The proposed method provides an effective solution for high-image-quality AMOLED displays by removing IR-drop and temperature effects during the sensing and displaying operations of the external compensation method. Experimental results show that the electrical characteristics of TFTs and OLEDs are successfully sensed, and that the stained image pattern due to the nonuniform luminance error and the differential aging of the OLED is removed. The luminance error range without compensation is from -6.1% to 9.0%, but it is from -1.1% to 1.2% using the external compensation at the luminance level of 120 cd/m2 in a 14.1-inch AMOLED panel.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 11 )