Cart (Loading....) | Create Account
Close category search window
 

Reliability Issues of SiC MOSFETs: A Technology for High-Temperature Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yu, L.C. ; Rutgers Univ., Piscataway, NJ, USA ; Dunne, G.T. ; Matocha, K.S. ; Cheung, K.P.
more authors

The wide-bandgap nature of silicon carbide (SiC) makes it an excellent candidate for applications where high temperature is required. The metal-oxide-semiconductor (MOS)-controlled power devices are the most favorable structure; however, it is widely believed that silicon oxide on SiC is physically limited, particularly at high temperatures. Therefore, experimental measurements of long-term reliability of oxide at high temperatures are necessary. In this paper, time-dependent dielectric-breakdown measurements are performed on state-of-the-art 4H-SiC MOS capacitors and double-implanted MOS field-effect transistors (DMOSFET) with stress temperatures between 225°C and 375°C and stress electric fields between 6 and 10 MV/cm. The field-acceleration factor is around 1.5 dec/(MV/cm) for all of the temperatures. The thermal activation energy is found to be ~ 0.9 eV, independent of the electric field. The area dependence of Weibull slope is discussed and shown to be a possible indication that the oxide quality has not reached the intrinsic regime and further oxide-reliability improvements are possible. Since our reliability data contradict the widely accepted belief that silicon oxide on SiC is fundamentally limited by its smaller conduction-band offset compared with Si, a detailed discussion is provided to examine the arguments of the early predictions.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:10 ,  Issue: 4 )

Date of Publication:

Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.