Cart (Loading....) | Create Account
Close category search window
 

Relative Navigation Between Two Spacecraft Using X-ray Pulsars

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Emadzadeh, A.A. ; Electr. Eng. Dept., Univ. of California, Los Angeles, CA, USA ; Speyer, J.L.

This paper suggests utilizing X-ray pulsars for relative navigation between two spacecraft in deep space. Mathematical models describing X-ray pulsar signals are presented. The pulse delay estimation problem is formulated, and the Cramér-Rao lower bound (CRLB) for estimation of the pulse delay is given. Two different pulse delay estimators are introduced, and their asymptotic performance is studied. Numerical complexity of each delay estimator, and the effect of absolute velocity errors on its performance is investigated. Using the pulsar measurements, a recursive algorithm is proposed for relative navigation between two spacecraft. The spacecraft acceleration data are provided by the inertial measurement units (IMUs). The pulse delay estimates are used as measurements, and based on models of the spacecraft and IMU dynamics, a Kalman filter is employed to obtain the 3-D relative position and velocity. Furthermore, it is shown that the relative accelerometer biases as well as the differential time between clocks can be estimated. Numerical simulations are also performed to assess the proposed navigation algorithm.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:19 ,  Issue: 5 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.