By Topic

Video background subtracion using improved Adaptive-K Gaussian Mixture Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hao Zhou ; Inf. Sch., Yunnan Univ., Kunming, China ; Xuejie Zhang ; Yun Gao ; Pengfei Yu

Video stream segmentation is a critical step in many computer vision applications. Background subtraction based on Gaussian Mixture Model (GMM) is a commonly used technique for video segmentation. In this paper, an improved Adaptive-K Gaussian Mixture Model (AKGMM) method was presented for updating background. The dimension of the parameter space at each pixel can be adjusted adaptively according to the frequency of pixel value changes. The number of GMM reflected the complexity of pattern at the pixel. Experimental results demonstrated that the proposed method is more adaptive and robust than some existing approaches.

Published in:

Advanced Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on  (Volume:5 )

Date of Conference:

20-22 Aug. 2010