Cart (Loading....) | Create Account
Close category search window

Nanopore-array-dispersed semiconductor quantum dots as nanosensors for gas detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhao, Zhouying ; College of Nanoscale Science and Engineering, University at Albany, Albany, New York 12203, USA ; Dansereau, Teresa M. ; Petrukhina, Marina A. ; Carpenter, Michael A.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

CdSe quantum dots (QDs) and anodic aluminum oxide (AAO) nanopore arrays were integrated to form an optically active element for chemical vapor detection. The introduction of porous AAO as a platform for QD dispersion is found to have twofolds of merit for QD based chemical sensing. First, AAO intensifies QD photoluminescence (PL), thus increasing the measurable responses, due both to redistributing high intensity near-fields for efficient excitation of QDs and introducing strong scattering effects for enhanced extraction of the resulting QD emission. Second, the nanopores of AAO retard film-wetting effects which occur at higher target chemical exposures and result in an inverted PL response as seen from QDs or QD-polymer films cast on nonporous substrates. The PL and response sensitivity of QDs on AAO is further increased through the use of an Au coated silicon support which increases the overall reflectivity of the composite material stack. These strategies enable QD-based materials to be used for sensitive detection of chemical vapors with monotonic trends across large concentration ranges, for example, 10–9400 ppm xylenes. This method is readily extendable to other systems and opens the door to the development of QD-based optical or optoelectronic devices.

Published in:

Applied Physics Letters  (Volume:97 ,  Issue: 11 )

Date of Publication:

Sep 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.