Cart (Loading....) | Create Account
Close category search window
 

Hierarchically adaptive distributed fault diagnosis in mobile ad hoc networks using clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yadav, N. ; Dept. of Comput. Sci. & Eng., NIT, Rourkela, India ; Khilar, P.M.

Ad hoc networking allows portable mobile devices to establish communication path without having any central infrastructure. As there is no centralized infrastructure and the mobile devices are moving randomly, this gives rise to various kinds of problems such as routing and detecting faulty mobile nodes in the network. In this paper, the problem of fault diagnosis in mobile ad hoc networks (MANETs) is considered. In fact, fault-diagnosis becomes important building block to establish dependability in MANET. An important problem in MANET is the distributed system-level diagnosis problem whose purpose is to have each fault-free mobile node to determine the state of all the mobile nodes assuming a MANET composed of N nodes that can be faulty or fault-free. This paper uses a hierarchical clustering approach proposed by authors Durate and Nanya for diagnosing nodes in mobile ad hoc networks (MANETs). The proposed diagnosis algorithm is linearly scalable under the assumption that the mobiles may be: (i) crash faulty due to out of range or physical damage and (ii) value faulty due to sending erroneous messages while operating in the field. The generic parameters such as diagnostic latency and message complexity are used for evaluating the proposed diagnosis algorithm. The result shows that diagnosis latency and message complexity is reduced as compared to non-clustering distributed diagnosis algorithm Forward Heartbeat.

Published in:

Industrial and Information Systems (ICIIS), 2010 International Conference on

Date of Conference:

July 29 2010-Aug. 1 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.