By Topic

Reverse Tree-based Key Routing: Robust Data Aggregation in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lei Zhang ; George Mason Univ., Mason, OH, USA ; Honggang Zhang ; Conti, M. ; Di Pietro, R.
more authors

Efficient and privacy-preserving data aggregation in a wireless sensor network (WSN) poses a tremendous challenge: how to cope with sensors compromise-once a sensor is compromised, its crypto material is compromised and so is privacy of aggregate data. To address this challenge, we propose two operationally simple and privacy-preserving protocols: PASKOS (Privacy-preserving based on Anonymously Shared Keys and Omniscient Sink) and PASKIS (Privacy-preserving based on Anonymously Shared Keys and Ignorant Sink). They leverage the idea that each node adds to its private sensed value a keyed value (computed from anonymously shared keys) and only uses the resulting sum in the data aggregation process. Our protocols guarantee that the sink is able to efficiently retrieve the aggregated original data by removing keyed values from the received aggregate while preserving the privacy of the aggregated data. Further, both protocols guarantee a high dataloss resilience-the sink retrieves the aggregate of the sensed values of only those nodes who actually participated in the aggregation process. PASKOS effectively protects the privacy of any node against other nodes, by requiring O(log N) communication cost in the worst case and O(1) on average, and requiring O(1) memory and computation cost. PASKIS can even protect a node's privacy against a compromised sink, and it is more efficient, requiring only O(1) overhead as for computation, communication, and memory; however, these gains in efficiency are traded-off with a (slightly) decreased level of privacy. Through formal analysis and simulations, we demonstrate the superior performance of our protocols against existing solutions in terms of privacy-preserving effectiveness, efficiency, and accuracy of computed aggregation.

Published in:

Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on

Date of Conference:

June 29 2010-July 1 2010