By Topic

An Efficient Data Mining Framework on Hadoop using Java Persistence API

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang Lai ; Key Lab. of Intell. Inf. Process., Chinese Acad. of Sci., Beijing, China ; Shi Zhongzhi

Data indexing is common in data mining when working with high-dimensional, large-scale data sets. Hadoop, a cloud computing project using the MapReduce framework in Java, has become of significant interest in distributed data mining. A feasible distributed data indexing algorithm is proposed for Hadoop data mining, based on ZSCORE binning and inverted indexing and on the Hadoop SequenceFile format. A data mining framework on Hadoop using the Java Persistence API (JPA) and MySQL Cluster is proposed. The framework is elaborated in the implementation of a decision tree algorithm on Hadoop. We compare the data index-ing algorithm with Hadoop MapFile indexing, which performs a binary search, in a modest cloud environment. The results show the algorithm is more efficient than naïve MapFile indexing. We compare the JDBC and JPA implementations of the data mining framework. The performance shows the framework is efficient for data mining on Hadoop.

Published in:

Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on

Date of Conference:

June 29 2010-July 1 2010