By Topic

Face Recognition using Layered Linear Discriminant Analysis and Small Subspace

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Razzak, M.I. ; Center of Excellence in Inf. Assurance (CoEIA), King Saud Univ., Riyadh, Saudi Arabia ; Khan, M.K. ; Alghathbar, K. ; Yousaf, R.

Face recognition has great demands in human recognition and recently it becomes one of the most important research areas of biometrics. In this paper, we present a novel layered face recognition method based on Fisher's linear discriminant analysis. The basic aim is to decrease FAR by reducing the face dataset to small size by applying layered linear discriminant analysis. Although, the computational complexity at the time of recognition is much higher than conventional PCA and LDA due to the weights computation for small subspace at the time of recognition, but on the other hand the layered LDA provides significant performance gain especially on similar face database. Layered LDA is insensitive to large dataset and also small sample size and it provides 93% accuracy on BANCA face database. Experimental and simulation results show that the proposed scheme has encouraging results for a practical face recognition system.

Published in:

Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on

Date of Conference:

June 29 2010-July 1 2010