By Topic

Toward a general-purpose analog VLSI neural network with on-chip learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Montalvo, A.J. ; Ericsson Inc., Research Triangle Park, NC, USA ; Gyurcsik, R.S. ; Paulos, J.J.

This paper describes elements necessary for a general-purpose low-cost very large scale integration (VLSI) neural network. By choosing a learning algorithm that is tolerant of analog nonidealities, the promise of high-density analog VLSI is realized. A 64-synapse, 8-neuron proof-of-concept chip is described. The synapse, which occupies only 4900 μm2 in a 2-μm technology, includes a hybrid of nonvolatile and dynamic weight storage that provides fast and accurate learning as well as reliable long-term storage with no refreshing. The architecture is user-configurable in any one-hidden-layer topology. The user-interface is fully microprocessor compatible. Learning is accomplished with minimal external support; the user need only present inputs, targets, and a clock. Learning is fast and reliable. The chip solves four-bit parity in an average of 680 ms and is successful in about 96% of the trials

Published in:

Neural Networks, IEEE Transactions on  (Volume:8 ,  Issue: 2 )