By Topic

A new approach for a phase controlled self-oscillating mixer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xue-Song Zhou ; Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA, USA ; Xiangdong Zhang ; Daryoush, A.S.

The analytical and experimental demonstration of subharmonic synchronization and phase shifting of a push-pull self-oscillating mixer is presented for the first time. Inherent high mixing gain of the self-oscillating mixer circuit is exploited to generate a strong signal at the same frequency of the reference signal, which is related to the local oscillator's (LO) phase information. A phase error between this signal and the reference signal is extracted in a phase comparator before phase locking. Analytical modeling of frequency and phase stabilization of the push-pull self-oscillating mixer is presented, which is also experimentally verified for a self-oscillating mixer at 12 GHz. This self-oscillating mixer circuit demonstrates efficient phase locking, 0°-180° continuous phase shifting capability in addition to the reported large locking range (>10 MHz), low close-in to carrier phase noise (<7 dB degradation of a 6 GHz synthesized reference signal), and a high mixer conversion gain (>17 dB at 17 GHz). The demonstrated subharmonic phase locking approach replaces the need for a frequency multiplier or divider before the phase comparator. The synchronized push-pull self-oscillating mixer circuit is applicable to the millimeter-wave frequency distributed transmitters and receivers, where low-loss phase shifting and efficient subharmonic phase and frequency locking are hard to achieve

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:45 ,  Issue: 2 )