By Topic

Scheduling multiple part-types in an unreliable single-machine manufacturing system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Perkins, J.R. ; Dept. of Manuf. Eng., Boston Univ., MA, USA ; Srikant, R.

Quadratic approximations to the differential cost-to-go function, which yield linear switching curves, have been extensively studied in the literature. In this paper, we provide solutions to the partial differential equations associated with the components of the steady-state probability density function of the buffer levels for two part-type, single-machine flexible manufacturing systems under a linear switching curve (LSC) policy. When there are more than two part-types, we derive the probability density function, under a prioritized hedging point (PHP) policy by decomposing the multiple part-type problem into a sequence of two part-type problems. The analytic expression for the steady-state probability density function is independent of the cost function. Therefore, for average cost functions, we can compute the optimal PHP policy or the more general optimal LSC policy for two part-type problems

Published in:

Automatic Control, IEEE Transactions on  (Volume:42 ,  Issue: 3 )