Cart (Loading....) | Create Account
Close category search window
 

Characterizing the Dependability of Distributed Storage Systems Using a Two-Layer Hidden Markov Model-Based Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xin Chen ; Dept. of Electr. & Comput. Eng., Tennessee Technol. Univ., Cookeville, TN, USA ; Warren, J. ; Fang Han ; Xubin He

Nowadays, dependability is of paramount importance in modern distributed storage systems. A challenging issue to deploy a storage system with certain dependability requirements or improve existing systems' dependability is how to comprehensively and efficiently characterize the dependability of those systems. In this paper, we present a two-layer Hidden Markov Model (HMM) to characterize the dependability of a distributed storage system, focusing on the layer of parallel file system. By training the model with observable measurements under faulty scenarios, such as I/O performance, we quantify the system dependability via a tuple of state transition probability, service degradation, and fault latency under those scenarios. Our experimental results on a distributed storage system with PVFS (Parallel Virtual File System) demonstrate the effectiveness of our HMM-based approach, which efficiently captures the behavior patterns of the target system under disk faults and memory overusage.

Published in:

Networking, Architecture and Storage (NAS), 2010 IEEE Fifth International Conference on

Date of Conference:

15-17 July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.