By Topic

Acoustic tomography at basin scales and clock errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. A. Silivra ; Appl. Res. Lab., Pennsylvania State Univ., University Park, PA, USA ; J. L. Spiesberger ; A. L. Fabrikant ; H. E. Hurlburt

A basin-scale acoustic tomography simulation is carried out for the northeast Pacific Ocean to determine the accuracy with which time must be kept at the sources when clocks at the receivers are accurate. A sequential Kalman filter is used to estimate sound-speed fluctuations and clock errors. Sound-speed fluctuations in the simulated ocean are estimated from an eddy-resolving hydrodynamic model of the Pacific forced by realistic wind fields at daily resolution from 1981-1993. The model output resembles features associated with El Nino and the Southern Oscillation, as well as many other features of the ocean's circulation. Using a Rossby-wave resolving acoustic array of four fixed sources and twenty drifting receivers, the authors find that the percentage of the modeled ocean's sound-speed variance accounted for with tomography is 92% at 400-km resolution, regardless of the accuracy of the clocks. Clocks which drift up to hundreds of seconds of error or more for a year do not degrade tomographic images of the model ocean. Tomographic reconstructions of the sound-speed field are insensitive to clock error primarily because of the wide variety of distances between the receivers from each source. Every receiver “sees” the same clock error from each source, regardless of section length, but the sound-speed fluctuations in the modeled ocean cannot yield travel times which lead to systematic changes in travel time that are independent of section length. The Kalman filter is thus able to map the sound-speed field accurately in the presence of large errors at the source's clocks

Published in:

IEEE Journal of Oceanic Engineering  (Volume:22 ,  Issue: 1 )