By Topic

Power System Stabilization Using Adaptive Neural Network-Based Dynamic Surface Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mehraeen, S. ; Dept. of Electr. & Comput. Eng., Missouri Univ. of Sci. & Technol., Rolla, MO, USA ; Jagannathan, S. ; Crow, M.L.

In this paper, the power system with an excitation controller is represented as a class of large-scale, uncertain, interconnected nonlinear continuous-time system in strict-feedback form. Subsequently, dynamic surface control (DSC)-based adaptive neural network (NN) controller is designed to overcome the repeated differentiation of the control input that is observed in the conventional backstepping approach. The NNs are utilized to approximate the unknown subsystem and the interconnection dynamics. By using novel online NN weight update laws with quadratic error terms, the closed-loop signals are shown to be locally asymptotically stable via Lyapunov stability analysis, even in the presence of NN approximation errors in contrast with other NN techniques where a bounded stability is normally assured. Simulation results on the IEEE 14-bus power system with generator excitation control are provided to show the effectiveness of the approach in damping oscillations that occur after disturbances are removed. The end result is a nonlinear decentralized adaptive state-feedback excitation controller for damping power systems oscillations in the presence of uncertain interconnection terms.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 2 )