Cart (Loading....) | Create Account
Close category search window
 

Robust Optimal Power Flow Solution Using Trust Region and Interior-Point Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sousa, A.A. ; Univ. Fed. de Pernambuco, Recife, Brazil ; Torres, G.L. ; Canizares, C.A.

A globally convergent optimization algorithm for solving large nonlinear optimal power flow (OPF) problems is presented. As power systems become heavily loaded, there is an increasing need for globally convergent OPF algorithms. By global convergence, one means the optimization algorithm being able to converge to an OPF solution, if at least one exists, for any choice of initial point. The globally convergent OPF presented is based on an infinity-norm trust region approach, using interior-point methods to solve the trust region subproblems. The performance of the proposed trust region interior-point OPF algorithm, when applied to the IEEE 30-, 57-, 118-, and 300-bus systems, and to an actual 1211-bus system, is compared with that of two widely used nonlinear interior-point methods, namely, a pure primal-dual and its predictor-corrector variant.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 2 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.