By Topic

Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part I: Modeling, Analysis, and Experimental Validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dadgour, H.F. ; Dept. of Electr. & Comput. Eng., Univ. of California, Santa Barbara, CA, USA ; Endo, K. ; De, V.K. ; Banerjee, K.

This paper highlights and experimentally verifies a new source of random threshold-voltage (V_th) fluctuation in emerging metal-gate transistors and proposes a statistical framework to investigate its device and circuit-level implications. The new source of variability, christened work-function (WF) variation (WFV), is caused by the dependence of metal WF on the orientation of its grains. The experimentally measured data reported in this paper confirm the existence of such variations in both planar and nonplanar high-k metal-gate transistors. As a result of WFV, the WFs of metal gates are statistical distributions instead of deterministic values. In this paper, the key parameters of such WF distributions are analytically modeled by identifying the physical dimensions of the devices and properties of materials used in the fabrication. It is shown that WFV can be modeled by a multinomial distribution where the key parameters of its probability distribution function can be calculated in terms of the aforementioned parameters. The analysis reveals that WFV will contribute a key source of V_th variability in emerging generations of metal-gate devices. Using the proposed framework, one can investigate the implications of WFV for process, device, and circuit design, which are discussed in Part II.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 10 )