By Topic

Resonance in Link RF Gain by Negative Photocurrent Resistance of Electroabsorption Modulator Under Very High Optical Power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shin, D.S. ; Dept. of Appl. Phys., Hanyang Univ., Ansan, South Korea

We examine the photocurrent effect in the electroabsorption modulator (EAM) under very high optical power and investigate its implication in the link radio-frequency (RF) gain. After reviewing the effect of the photocurrent in the EAM, using the voltage-source model with the device capacitance included, we demonstrate a possibility that the RF gain can be enhanced by resonance due to the photocurrent if the photocurrent decreases with device bias, exhibiting negative differential resistance. We explore an EAM with intrastep quantum wells showing blueshift to achieve the negative photocurrent resistance and demonstrate a case where an enhancement in the link RF gain is possible.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 21 )