By Topic

Fabrication and characterization of truly 3-D diffuser/nozzle microstructures in silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heschel, M. ; Mikroelektronik Centret, Lyngby, Denmark ; Mullenborn, M. ; Bouwstra, S.

We present microfabrication and characterization of truly three-dimensional (3-D) diffuser/nozzle structures in silicon. Chemical vapor deposition (CVD), reactive ion etching (RIE), and laser-assisted etching are used to etch flow chambers and diffuser/nozzle elements. The flow behavior of the fabricated elements and the dependence of diffuser/nozzle efficiency on structure geometry has been investigated. The large freedom of 3-D micromachining combined with rapid prototyping allows one to characterize and optimize diffuser/nozzle structures

Published in:

Microelectromechanical Systems, Journal of  (Volume:6 ,  Issue: 1 )