By Topic

Effect of hydrogen on catalyst nanoparticles in carbon nanotube growth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Behr, Michael J. ; Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA ; Gaulding, E.Ashley ; Mkhoyan, K.Andre ; Aydil, Eray S.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3467971 

The structures of carbon nanotubes grown from catalytic nanoparticles via plasma-enhanced chemical vapor deposition in CH4/H2 mixtures show a strong dependence on the H2-to-CH4 ratio in the feed gas. A suite of characterization techniques, including optical emission, infrared, and Raman spectroscopies combined with convergent-beam and selected-area electron diffraction, and high-resolution (scanning) transmission electron microscopy imaging were used to systematically investigate the interrelation among plasma gas phase composition, catalysts morphology, catalyst structure, and carbon nanotube structure. Hydrogen plays a critical role in determining the final carbon nanotube structure through its effect on the catalyst crystal structure and morphology. At low H2-to-CH4 ratios (∼1), iron catalyst nanoparticles are converted to Fe3C and well-graphitized nanotubes grow from elongated Fe3C crystals. High (>5) H2-to-CH4 ratios in the feed gas result in high hydrogen concentrations in the plasma and strongly reducing conditions, which prevents conversion of Fe to Fe3C. In the latter case, poorly-graphitized nanofibers grow from ductile bcc iron nanocrystals that are easily deformed into tapered nanocrystals that yield nanotubes with thick walls.

Published in:

Journal of Applied Physics  (Volume:108 ,  Issue: 5 )