By Topic

Analysis of anti-directional-twin-rotary motor drive characteristics for electric vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kawamura, A. ; Div. of Electr. & Comput. Eng., Yokohama Nat. Univ., Japan ; Hoshi, N. ; Tae Woong Kim ; Yokoyama, T.
more authors

A new power train for electric vehicles is proposed using an anti-directional twin rotary (ADTR) motor. A stator in a conventional motor was reformed to be movable, and the stator (outer rotor) rotates in the opposite direction to the inner rotor. In this paper, several characteristics of an induction motor-type ADTR motor are reported. When an ADTR motor is used in electric vehicles, the direction of one of the rotors should be reversed and both rotors rotate in the same direction, propelling the two wheels of the electric vehicle. The torque of the wheels can be balanced without a differential gear. The fundamental torque-balancing characteristics of an ADTR motor are clarified, namely, the torque balance theory, the torque-speed characteristics, the rotor-speed transient characteristics and the transient torque response under speed sensorless torque control

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:44 ,  Issue: 1 )