Cart (Loading....) | Create Account
Close category search window

Low temperature photoluminescence and cathodoluminescence studies of nonpolar GaN grown using epitaxial lateral overgrowth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Haberlen, M. ; Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom ; Badcock, T.J. ; Moram, M.A. ; Hollander, J.L.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Low temperature cathodo- and photoluminescence has been performed on nonpolar a-plane GaN films grown using epitaxial lateral overgrowth. In films overgrown at a low V–III ratio, the emission spectrum is dominated by “yellow” and “blue” luminescence bands, attributed to recombination at point defects or impurities. The intensity of this emission is observed to decrease steadily across the window region along the -c direction, possibly due to asymmetric diffusion of a point defect/impurity species. When overgrown at a higher V–III ratio, the near band edge and basal-plane stacking fault emission intensity increases by orders of magnitude and a donor–acceptor pair band is observed. Using monochromatic cathodoluminescence imaging, the various emission features are correlated with the microstructure of the film. In particular, the peak energy of the basal-plane stacking fault emission is seen to be blueshifted by ∼15 meV in the wing relative to the window region, which may be related to the different strain states in the respective regions.

Published in:

Journal of Applied Physics  (Volume:108 ,  Issue: 3 )

Date of Publication:

Aug 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.