By Topic

Propulsion system design of electric and hybrid vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ehsani, M. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Rahman, K.M. ; Toliyat, H.A.

There is a growing interest in electric and hybrid-electric vehicles due to environmental concerns. Efforts are directed toward developing an improved propulsion system for electric and hybrid-electric vehicles applications. This paper is aimed at developing the system design philosophies of electric and hybrid vehicle propulsion systems. The vehicles' dynamics are studied in an attempt to find an optimal torque-speed profile for the electric propulsion system. This study reveals that the vehicles' operational constraints, such as initial acceleration and grade, can be met with minimum power rating if the power train can be operated mostly in the constant power region. Several examples are presented to demonstrate the importance of the constant power operation. Operation of several candidate motors in the constant power region are also examined. Their behaviors are compared and conclusions are made

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:44 ,  Issue: 1 )