By Topic

Local strain in tunneling transistors based on graphene nanoribbons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lu, Yang ; Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611-6130, USA ; Guo, Jing

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3479915 

A band-to-band tunneling field-effect transistor (FET) can achieve a subthreshold slope steeper than 60 mV/dec at room temperature, but the on-current is low due to existence of the tunneling barrier. Graphene has a monolayer-thin body which is amenable to strain. By using self-consistent quantum transport simulations, we show that with local strain applied at the tunneling junction between the source and the channel in a graphene nanoribbon tunneling FET, the on-current can be significantly improved by over a factor of 10 with the same off-current, no matter at the ballistic limit or in the presence of inelastic phonon scattering.

Published in:

Applied Physics Letters  (Volume:97 ,  Issue: 7 )