By Topic

A new approach for subset 2-D AR model identification for describing textures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Sarkar ; Dept. of Math., Indian Inst. of Technol., Kharagpur, India ; K. M. S. Sharma ; R. V. Sonak

This paper addresses the problem of identification of appropriate autoregressive (AR) components to describe textural regions of digital images by a general class of two-dimensional (2-D) AR models. In analogy with univariate time series, the proposed technique first selects a neighborhood set of 2-D lag variables corresponding to the significant multiple partial auto-correlation coefficients. A matrix is then suitably formed from these 2-D lag variables. Using singular value decomposition (SVD) and orthonormal with column pivoting factorization (QRcp) techniques, the prime information of this matrix corresponding to different pseudoranks is obtained. Schwarz's (1978) information criterion (SIG) is then used to obtain the optimum set of 2-D lag variables, which are the appropriate autoregressive components of the model for a given textural image. A four-class texture classification scheme is illustrated with such models and a comparison of the technique with the work of Chellappa and Chatterjee (1985) is provided

Published in:

IEEE Transactions on Image Processing  (Volume:6 ,  Issue: 3 )