By Topic

Object recognition using multilayer Hopfield neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Young, S.S. ; Health Imaging Res. Lab., Eastman Kodak Co., Rochester, NY, USA ; Scott, P.D. ; Nasrabadi, N.M.

An object recognition approach based on concurrent coarse-and-fine matching using a multilayer Hopfield neural network is presented. The proposed network consists of several cascaded single-layer Hopfield networks, each encoding object features at a distinct resolution, with bidirectional interconnections linking adjacent layers. The interconnection weights between nodes associating adjacent layers are structured to favor node pairs for which model translation and rotation, when viewed at the two corresponding resolutions, are consistent. This interlayer feedback feature of the algorithm reinforces the usual intralayer matching process in the conventional single-layer Hopfield network in order to compute the most consistent model-object match across several resolution levels. The performance of the algorithm is demonstrated for test images containing single objects, and multiple occluded objects. These results are compared with recognition results obtained using a single-layer Hopfield network

Published in:

Image Processing, IEEE Transactions on  (Volume:6 ,  Issue: 3 )