By Topic

Damage Localization by the Change of Structural Flexibility

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lin, S.Z. ; Dept. of Civil Eng., Shaoxing Univ., Shaoxing, China ; Yang, Q.W.

A new method based on best achievable flexibility change is presented in this study for structural damage localization. The algorithm makes use of an existing finite element model of the “healthy” structure and a subset of experimentally measured modal parameters of the “damaged” structure. Central to the damage localization approach is the computation of the Euclidean distances between the measured flexibility change and the best achievable flexibility changes. The location of damage can be identified by searching for a value that is considerably smaller than others in these distances. A numerical example of a spring-mass system is used to demonstrate the efficiency of the method. The illustrative example shows the good efficiency and stability of the numerical model on the localization of structural damage. It has been shown that the presented methodology may be a promising tool to be used by research groups working on experimental damage localization.

Published in:

Distributed Computing and Applications to Business Engineering and Science (DCABES), 2010 Ninth International Symposium on

Date of Conference:

10-12 Aug. 2010