By Topic

Performance of energy-efficient TDMA schemes in data-gathering scenarios with periodic sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christian Renner ; Institute of Telematics at Hamburg University of Technology, Schwarzenbergstrasse 95, D-21073, Germany ; Volker Turau ; Christoph Weyer

Energy-efficient transportation of periodical sensor readings towards a single sink in wireless sensor networks is a challenging task. In general, two data-gathering strategies exist: on-demand and bulk data forwarding. For both strategies, cross-layer techniques are a promising approach, where TDMA is tailored to the underlying routing tree. Therefore, different TDMA schemes are compared regarding achievable throughput, packet delay, and energy-efficiency for various sampling rates and scenarios. Existing schemes perform well in dedicated topologies only. The new and simple TDMA scheme presented in this paper outperforms its predecessors in all scenarios under consideration. These findings are substantiated by both theoretical analysis and extensive simulation.

Published in:

Networked Sensing Systems (INSS), 2010 Seventh International Conference on

Date of Conference:

15-18 June 2010