By Topic

Novel Architecture for Highly Hardware Efficient Implementation of Real Time Matrix Inversion Using Gauss Jordan Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandrakanth, V. ; Electron. & Radar Dev. Establ. (LRDE), Bangalore, India ; Kuloor, R.

Advent of Matrix Theory has greatly aided and simplified the analysis for variety of signal processing algorithms. It has been proven that matrix notation is convenient for representation of signals and to perform operations on them. Many problems such as signal modeling, Wiener filtering and spectrum estimation require finding the solution or solutions to a set of linear equations. Some of the common matrix related operations include transpose, triangularization, determinant calculation, eigen value decomposition and matrix inversion. Most of these operations are computationally intensive and have been difficult to implement on real time systems and therefore are not pursued much in VLSI design. In this paper we present a highly hardware efficient and simple memory based novel architecture implementing widely established Gauss Jordan technique for finding matrix inverse. First triangularization of the matrix is done which on further processing calculates the inverse matrix.

Published in:

VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on

Date of Conference:

5-7 July 2010