By Topic

QCA Systolic Matrix Multiplier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Lu ; Inst. of Electron., Commun. & Inf. Technol., Queen''s Univ. Belfast, Belfast, UK ; Weiqiang Liu ; O'Neill, M. ; Swartzlander, E.E.

Quantum-dot Cellular Automata (QCA) technology is a promising alternative to CMOS technology. It is attractive due to its fast speed, small area and low power consumption. To explore the characteristics of QCA technology, digital circuit design approaches have been investigated. Due to the inherent wire delay in this technology, QCA appears to be suitable for pipelined architectures particularly. Systolic arrays take advantage of pipelining and parallelism. Therefore, an investigation into systolic array design in QCA technology is provided in this paper. A case study of the first systolic matrix multiplier is designed and analyzed. The results show that by applying the systolic array structure to QCA designs, significant benefits can be achieved particular with large systolic array size, even more so than when applied to CMOS-based technology. QCA has significant advantages in terms of speed and area over CMOS technology, for instance, a factor of 12 smaller in terms of the area in this proposed matrix multiplier design when compared with same CMOS 32 nm implementation.

Published in:

VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on

Date of Conference:

5-7 July 2010