By Topic

Storage Coding for Wear Leveling in Flash Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Anxiao Jiang ; Department of Computer Science and Engineering, Texas A&M University, College Station, U.S.A. ; Robert Mateescu ; Eitan Yaakobi ; Jehoshua Bruck
more authors

Flash memory is a nonvolatile computer memory comprised of blocks of cells, wherein each cell is implemented as either NAND or NOR floating gate. NAND flash is currently the most widely used type of flash memory. In a NAND flash memory, every block of cells consists of numerous pages; rewriting even a single page requires the whole block to be erased and reprogrammed. Block erasures determine both the longevity and the efficiency of a flash memory. Therefore, when data in a NAND flash memory are reorganized, minimizing the total number of block erasures required to achieve the desired data movement is an important goal. This leads to the flash data movement problem studied in this paper. We show that coding can significantly reduce the number of block erasures required for data movement, and present several optimal or nearly optimal data-movement algorithms based upon ideas from coding theory and combinatorics. In particular, we show that the sorting-based (noncoding) schemes require O(n log n) erasures to move data among n blocks, whereas coding-based schemes require only O(n) erasures. Furthermore, coding-based schemes use only one auxiliary block, which is the best possible and achieve a good balance between the number of erasures in each of the n+1 blocks.

Published in:

IEEE Transactions on Information Theory  (Volume:56 ,  Issue: 10 )