Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A Family of Asymptotically Good Binary Fingerprinting Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Cotrina-Navau, J. ; Dept. d''Eng. Telematica, Univ. Politec. de Catalunya, Barcelona, Spain ; Fernández, M.

A fingerprinting code is a set of codewords that are embedded in each copy of a digital object with the purpose of making each copy unique. If the fingerprinting code is c-secure with error, then the decoding of a pirate word created by a coalition of at most c dishonest users, will expose at least one of the guilty parties with probability 1-ϵ. The Boneh-Shaw fingerprinting codes are n-secure codes with ϵB error, where n also denotes the number of authorized users. Unfortunately, the length the Boneh-Shaw codes should be of order O(n3 log(n/ϵB)), which is prohibitive for practical applications. In this paper, we prove that the Boneh-Shaw codes are (c<; n)-secure for lengths of order O(nc2 log(n/ϵB)). Moreover, in this paper it is also shown how to use these codes to construct binary fingerprinting codes of length L=O(c6 log(c/ϵ) log n), with probability of error ϵ<;ϵB and an identification algorithm of complexity poly(log n)=poly(L). These results improve in some aspects the best known schemes and with a much more simple construction.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 10 )