By Topic

A Family of Asymptotically Good Binary Fingerprinting Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cotrina-Navau, J. ; Dept. d''Eng. Telematica, Univ. Politec. de Catalunya, Barcelona, Spain ; Fernández, M.

A fingerprinting code is a set of codewords that are embedded in each copy of a digital object with the purpose of making each copy unique. If the fingerprinting code is c-secure with error, then the decoding of a pirate word created by a coalition of at most c dishonest users, will expose at least one of the guilty parties with probability 1-ϵ. The Boneh-Shaw fingerprinting codes are n-secure codes with ϵB error, where n also denotes the number of authorized users. Unfortunately, the length the Boneh-Shaw codes should be of order O(n3 log(n/ϵB)), which is prohibitive for practical applications. In this paper, we prove that the Boneh-Shaw codes are (c<; n)-secure for lengths of order O(nc2 log(n/ϵB)). Moreover, in this paper it is also shown how to use these codes to construct binary fingerprinting codes of length L=O(c6 log(c/ϵ) log n), with probability of error ϵ<;ϵB and an identification algorithm of complexity poly(log n)=poly(L). These results improve in some aspects the best known schemes and with a much more simple construction.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 10 )