By Topic

Affective Audio-Visual Words and Latent Topic Driving Model for Realizing Movie Affective Scene Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Irie, G. ; NTT Cyber Solutions Labs., NTT Corp., Yokosuka, Japan ; Satou, T. ; Kojima, A. ; Yamasaki, T.
more authors

This paper presents a novel method for movie affective scene classification that outputs the emotion (in the form of labels) that the scene is likely to arouse in viewers. Since the affective preferences of users play an important role in movie selection, affective scene classification has the potential to develop more attractive user-centric movie search and browsing applications. Two main issues in designing movie affective scene classification are considered. One is “how to extract features that are strongly related to the viewer's emotions”, and the other is “how to map the extracted features to the emotion categories”. For the former, we propose a method to extract emotion-category-specific audio-visual features named affective audio-visual words (AAVWs). For the latter issue, we propose a classification model named latent topic driving model (LTDM). Assuming that viewers' emotions are dynamically changed by the movie scene sequences, LTDM models emotions as Markovian dynamic systems driven by the sequential stimuli of the movie content. Experiments on 206 movie scenes extracted from 24 movie titles and the corresponding labels of eight emotion categories given by 16 subjects show that our method outperforms conventional approaches in terms of the subject agreement rate.

Published in:

Multimedia, IEEE Transactions on  (Volume:12 ,  Issue: 6 )