By Topic

Affective Visualization and Retrieval for Music Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shiliang Zhang ; Key Lab. of Intell. Inf. Process., Chinese Acad. of Sci., Beijing, China ; Qingming Huang ; Shuqiang Jiang ; Wen Gao
more authors

In modern times, music video (MV) has become an important favorite pastime to people because of its conciseness, convenience, and the ability to bring both audio and visual experiences to audiences. As the amount of MVs is explosively increasing, it has become an important task to develop new techniques for effective MV analysis, retrieval, and management. By stimulating the human affective response mechanism, affective video content analysis extracts the affective information contained in videos, and, with the affective information, natural, user-friendly, and effective MV access strategies could be developed. In this paper, a novel integrated system (i.MV) is proposed for personalized MV affective analysis, visualization, and retrieval. In i.MV, we not only perform the personalized MV affective analysis, which is a challenging and insufficiently covered problem in current affective content analysis field, but also propose novel affective visualization to convert the abstract affective states intuitive and friendly to users. Based on the affective analysis and visualization, affective information based MV retrieval is achieved. Both comprehensive experiments and subjective user studies on a large MV dataset demonstrate that our personalized affective analysis is more effective than the previous algorithms. In addition, affective visualization is proved to be more suitable for affective information-based MV retrieval than the commonly used affective state representation strategies.

Published in:

Multimedia, IEEE Transactions on  (Volume:12 ,  Issue: 6 )