By Topic

An Increased Performance of Clustering High Dimensional Data Using Principal Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N Tajunisha ; Dept. of Comput. Sci., Sri Ramakrishna Coll. of Arts & Sci. for Women, Coimbatore, India ; V. Saravanan

In many application domains such as information retrieval, computational biology, and image processing the data dimension is usually very high. Developing effective clustering methods for high dimensional dataset is a challenging problem due to the curse of dimensionality. The k-means clustering algorithm is used for many practical applications. But it is computationally expensive and the quality of the resulting clusters heavily depends on the selection of initial centroid and dimension of the data. The accuracy of the resultant value perhaps not up to the level of expectation when the dimensions of the dataset is high because we cannot say that the dataset chosen are free from noisy and flawless. So it is required to reduce the dimensionality of the given dataset in order to improve the efficiency and accuracy. This paper proposed a new approach to improve the accuracy of the cluster results by using PCA to determine the initial centroid and also to reduce the dimension of the data.

Published in:

Integrated Intelligent Computing (ICIIC), 2010 First International Conference on

Date of Conference:

5-7 Aug. 2010