By Topic

A Parallel Clustering Ensemble Algorithm for Intrusion Detection System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongwei Gao ; Cloud Comput. Lab., Chinese Acad. of Sci., Shenzhen, China ; Dingju Zhu ; Xiaomin Wang

Clustering analysis is a common unsupervised anomaly detection method, and often used in Intrusion Detection System (IDS), which is an important component in the network security. The single cluster algorithm is difficult to get the great effective detection, and then a new cluster algorithm based on evidence accumulation is born. The IDS with clustering ensemble has a low false positive rate and high detection rate, however, the IDS is slow to detect the mass data stream, and it can not detect the attacks in time. This paper presents a parallel clustering ensemble algorithm to improve the speed and the effective of the system. Finally, the KDDCUP99 data set is used to test the system show that the IDS have greatly improvement in time and efficiency.

Published in:

Distributed Computing and Applications to Business Engineering and Science (DCABES), 2010 Ninth International Symposium on

Date of Conference:

10-12 Aug. 2010