By Topic

Metric Data Analysis Enhanced through Temporal Visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Renato Bueno ; Fed. Univ. of Sao Carlos (UFSCar), Sao Carlos, Brazil ; Humberto L. Razente ; Daniel S. Kaster ; Maria Camila N. Barioni
more authors

The human vision can naturally interpret data in spaces of 2 or 3 dimensions. When data is in higher dimensional spaces, in most cases the visualization is not intuitive. Regarding metric spaces, the interpretation is even harder, since they often do not have a direct spatial representation. However, the need to analyze how metric-represented data evolve over time is pretty common when one needs to understand several phenomena and in decision making processes, as it occurs in medical and agrometeorological applications. This paper presents three interactive techniques to visualize metric data that vary over time. Each one focus on a different way to interpret the temporal information. The first technique shows data evolving in a timeline axis. The second overlaps evolving snapshots of the space showing how the space varies regarding time. The last one does not treat temporal data as a dimension, it is used instead to define the similarity among complex data, employing the new concept of metric-temporal spaces, which seamlessly integrate time and metric data into a single similarity space. Visualization examples with real datasets are presented to show the usefulness of the proposed techniques.

Published in:

2010 14th International Conference Information Visualisation

Date of Conference:

26-29 July 2010